Method from java.util.concurrent.ArrayBlockingQueue Detail: |
public boolean add(E e) {
return super.add(e);
}
Inserts the specified element at the tail of this queue if it is
possible to do so immediately without exceeding the queue's capacity,
returning {@code true} upon success and throwing an
{@code IllegalStateException} if this queue is full. |
static E cast(Object item) {
return (E) item;
}
|
public void clear() {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
items[i] = null;
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
} finally {
lock.unlock();
}
}
Atomically removes all of the elements from this queue.
The queue will be empty after this call returns. |
public boolean contains(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
if (o.equals(items[i]))
return true;
return false;
} finally {
lock.unlock();
}
}
Returns {@code true} if this queue contains the specified element.
More formally, returns {@code true} if and only if this queue contains
at least one element {@code e} such that {@code o.equals(e)}. |
final int dec(int i) {
return ((i == 0) ? items.length : i) - 1;
}
|
public int drainTo(Collection<? super E> c) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int max = count;
while (n < max) {
c.add(this.< E >cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
}
|
public int drainTo(Collection<? super E> c,
int maxElements) {
checkNotNull(c);
if (c == this)
throw new IllegalArgumentException();
if (maxElements < = 0)
return 0;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int max = (maxElements < count) ? maxElements : count;
while (n < max) {
c.add(this.< E >cast(items[i]));
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count -= n;
takeIndex = i;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
}
|
final int inc(int i) {
return (++i == items.length) ? 0 : i;
}
|
final E itemAt(int i) {
return this.< E >cast(items[i]);
}
|
public Iterator<E> iterator() {
return new Itr();
}
Returns an iterator over the elements in this queue in proper sequence.
The elements will be returned in order from first (head) to last (tail).
The returned {@code Iterator} is a "weakly consistent" iterator that
will never throw ConcurrentModificationException ,
and guarantees to traverse elements as they existed upon
construction of the iterator, and may (but is not guaranteed to)
reflect any modifications subsequent to construction. |
public boolean offer(E e) {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == items.length)
return false;
else {
insert(e);
return true;
}
} finally {
lock.unlock();
}
}
Inserts the specified element at the tail of this queue if it is
possible to do so immediately without exceeding the queue's capacity,
returning {@code true} upon success and {@code false} if this queue
is full. This method is generally preferable to method #add ,
which can fail to insert an element only by throwing an exception. |
public boolean offer(E e,
long timeout,
TimeUnit unit) throws InterruptedException {
checkNotNull(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length) {
if (nanos < = 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
insert(e);
return true;
} finally {
lock.unlock();
}
}
Inserts the specified element at the tail of this queue, waiting
up to the specified wait time for space to become available if
the queue is full. |
public E peek() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (count == 0) ? null : itemAt(takeIndex);
} finally {
lock.unlock();
}
}
|
public E poll() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (count == 0) ? null : extract();
} finally {
lock.unlock();
}
}
|
public E poll(long timeout,
TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0) {
if (nanos < = 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return extract();
} finally {
lock.unlock();
}
}
|
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
insert(e);
} finally {
lock.unlock();
}
}
Inserts the specified element at the tail of this queue, waiting
for space to become available if the queue is full. |
public int remainingCapacity() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return items.length - count;
} finally {
lock.unlock();
}
}
Returns the number of additional elements that this queue can ideally
(in the absence of memory or resource constraints) accept without
blocking. This is always equal to the initial capacity of this queue
less the current {@code size} of this queue.
Note that you cannot always tell if an attempt to insert
an element will succeed by inspecting {@code remainingCapacity}
because it may be the case that another thread is about to
insert or remove an element. |
public boolean remove(Object o) {
if (o == null) return false;
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) {
if (o.equals(items[i])) {
removeAt(i);
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
Removes a single instance of the specified element from this queue,
if it is present. More formally, removes an element {@code e} such
that {@code o.equals(e)}, if this queue contains one or more such
elements.
Returns {@code true} if this queue contained the specified element
(or equivalently, if this queue changed as a result of the call).
Removal of interior elements in circular array based queues
is an intrinsically slow and disruptive operation, so should
be undertaken only in exceptional circumstances, ideally
only when the queue is known not to be accessible by other
threads. |
void removeAt(int i) {
final Object[] items = this.items;
// if removing front item, just advance
if (i == takeIndex) {
items[takeIndex] = null;
takeIndex = inc(takeIndex);
} else {
// slide over all others up through putIndex.
for (;;) {
int nexti = inc(i);
if (nexti != putIndex) {
items[i] = items[nexti];
i = nexti;
} else {
items[i] = null;
putIndex = i;
break;
}
}
}
--count;
notFull.signal();
}
Deletes item at position i.
Utility for remove and iterator.remove.
Call only when holding lock. |
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
}
Returns the number of elements in this queue. |
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0)
notEmpty.await();
return extract();
} finally {
lock.unlock();
}
}
|
public Object[] toArray() {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
final int count = this.count;
Object[] a = new Object[count];
for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
a[k] = items[i];
return a;
} finally {
lock.unlock();
}
}
Returns an array containing all of the elements in this queue, in
proper sequence.
The returned array will be "safe" in that no references to it are
maintained by this queue. (In other words, this method must allocate
a new array). The caller is thus free to modify the returned array.
This method acts as bridge between array-based and collection-based
APIs. |
public T[] toArray(T[] a) {
final Object[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
final int count = this.count;
final int len = a.length;
if (len < count)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), count);
for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
a[k] = (T) items[i];
if (len > count)
a[count] = null;
return a;
} finally {
lock.unlock();
}
}
Returns an array containing all of the elements in this queue, in
proper sequence; the runtime type of the returned array is that of
the specified array. If the queue fits in the specified array, it
is returned therein. Otherwise, a new array is allocated with the
runtime type of the specified array and the size of this queue.
If this queue fits in the specified array with room to spare
(i.e., the array has more elements than this queue), the element in
the array immediately following the end of the queue is set to
{@code null}.
Like the #toArray() method, this method acts as bridge between
array-based and collection-based APIs. Further, this method allows
precise control over the runtime type of the output array, and may,
under certain circumstances, be used to save allocation costs.
Suppose {@code x} is a queue known to contain only strings.
The following code can be used to dump the queue into a newly
allocated array of {@code String}:
String[] y = x.toArray(new String[0]);
Note that {@code toArray(new Object[0])} is identical in function to
{@code toArray()}. |
public String toString() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
int k = count;
if (k == 0)
return "[]";
StringBuilder sb = new StringBuilder();
sb.append('[');
for (int i = takeIndex; ; i = inc(i)) {
Object e = items[i];
sb.append(e == this ? "(this Collection)" : e);
if (--k == 0)
return sb.append(']').toString();
sb.append(',').append(' ');
}
} finally {
lock.unlock();
}
}
|